
GSDLAB TECHNICAL REPORT

From State- to Delta-based Bidirectional
Model Transformations: the Symmetric Case

Zinovy Diskin, Yingfei Xiong, Krzysztof Czarnecki,
Hartmut Ehrig, Frank Hermann, and Fernando Orejas

GSDLAB–TR 2011–05–03 May 2011

Generative Software Development Laboratory
University of Waterloo

200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1

WWW page: http://gsd.uwaterloo.ca/

The GSDLAB technical reports are published as a means to ensure timely dissemination

of scholarly and technical work on a non-commercial basis. Copyright and all rights

therein are maintained by the authors or by other copyright holders, notwithstanding

that they have offered their works here electronically. It is understood that all persons

copying this information will adhere to the terms and constraints invoked by each author’s

copyright. These works may not be reposted without the explicit permission of the

copyright holder.

From State- to Delta-based Bidirectional Model
Transformations: the Symmetric Case

Zinovy Diskin1, Yingfei Xiong1, Krzysztof Czarnecki1, Hartmut Ehrig2, Frank
Hermann2,3, and Fernando Orejas4

1 Generative Software Development Lab, University of Waterloo, Canada
{zdiskin,yingfei,kczarnec}@gsd.uwaterloo.ca

2 Institut für Softwaretechnik und Theoretische Informatik,
Technische Universität Berlin, Germany, ehrig@cs.tu-berlin.de

3 Interdisciplinary Center for Security, Reliability and Trust,
Université du Luxembourg, Frank.Hermann@uni.lu

4 Departament de Llenguatges i Sistemes Informàtics,
Universitat Politècnica de Catalunya, Barcelona, Spain, orejas@lsi.upc.edu

Abstract. A bidirectional transformation (BX) keeps a pair of interre-
lated models synchronized. Symmetric BXs are those for which neither
model in the pair fully determines the other. We build two algebraic
frameworks for symmetric BXs, with one correctly implementing the
other, and both being delta-based generalizations of known state-based
frameworks. We identify two new algebraic laws—weak undoability and
weak invertibility, which capture important semantics of BX and are use-
ful for both state- and delta-based settings. Our approach also provides
a flexible tool architecture adaptable to different user’s needs.

1 Introduction

Keeping a system of models mutually consistent (model synchronization) is vital
for model-driven engineering. In a typical scenario, given a pair of inter-related
models, changes in either of them are to be propagated to the other to restore
consistency. This setting is often referred to as bidirectional model transforma-
tion (BX) [3].

As noted by Stevens [14], despite early availability of several BX tools on the
market, they did not gain much user appreciation because of semantic issues.
Indeed, to avoid surprises, a user should clearly understand the behavior of
synchronization procedures implemented by the tool. To formalize the semantics
of BX tools and guide their implementation, algebraic frameworks for BX have
been studied intensively [7, 14, 6, 18, 11].

The majority of algebraic BX frameworks (including all those cited above) are
state-based. Synchronizing operations take the states of models before and after
update as input, and produce new states of models as output. This design as-
sumes that model alignment, i.e., discovering relations (deltas) between models,
is done by update propagating procedures themselves. Hence, two quite different

operations—heuristics-based delta discovery and algebraic delta propagation—
are merged, which causes several theoretical and practical problems [2, 5]; we
will discuss them in Section 2.2 after considering several basic examples.

To separate delta discovery and propagation, several researchers proposed
to build delta-based frameworks [4, 2, 5, 10], in which propagation operations use
deltas as input and output rather than compute them internally. Such frame-
works (a general one [5] and a tree-oriented [2]) have been built for the asym-
metric BX case, in which one model in the pair is a view of the other and hence
does not contain any new information. In practice, however, it is often the case
that two models share some information but each of them contains something
new not present in the other; following [10], we call this case symmetric BX. The
symmetric case has been considered in the state-based setting [12, 14, 6, 10], yet
a precise delta-based symmetric framework has been an open issue.

In this paper, we fill the gap and develop a delta-based framework for sym-
metric BX. We build two algebraic structures, symmetric delta lenses and (con-
sistency) maintainers, which comprise delta-based synchronization operations
and laws they must satisfy. Lenses are more abstract and specify an interface
of a model synchronization tool; maintainers are closer to implementation and
allow the tool to reuse an infrastructure for delta composition. We show that 1)
a lens can be built from a maintainer, and 2) the lens’s laws are derived from
the maintainer’s laws so that a desirable lens’s behavior is guaranteed when the
lens is implemented by a suitable maintainer.

The second major contribution of the paper is the introduction of two new
algebraic laws: weak invertibility and weak undoability. A long-standing prob-
lem in existing symmetric BX frameworks is that the basic laws (correctness
and Hippocraticness [12, 14]) are not enough to ensure reasonable BX behavior,
whereas more advanced laws like undoability [14] and invertibility [6] are known
to be too strong and exclude many quite practical BXs. Our new laws solve this
problem by reshaping strong laws into a weaker form that allows for reasonable
symmetric BXs and yet prohibits BXs with unwanted behavior.

The paper is organized as follows. Section 2 analyzes an example and iden-
tifies three problems of state-based BXs that motivate our work on delta-based
BXs. We present sd-lenses in Section 3 and maintainers in Section 4. Section 5
discusses relation to state-based frameworks, Section 6 discusses related work,
and Section 7 concludes the paper.

2 The need for deltas

We begin with an example showing how state-based frameworks work and what
their problems are. Then we explain why delta-based frameworks are needed.

2.1 Example

Figure 1 presents two related models A and B. The former specifies a class of
Persons with their names and birth years, and the latter specifies Employees

2

?
?

p1:Person
fName=Melinda
lName=French
bYear=1964

p2:Person
fName=Bill

lName=Clinton
bYear=1946

p3:Person
fName=Bill

lName=Gates
bYear=1955 A

e1:Employee
fName=Melinda
lName=French
Salary=5000

e2:Employee
fName=Bill

lName=Clinton
Salary=4000

e3:Employee
fName=Bill

lName=Gates
Salary=6000

B

:bPpg
p1':Person

fName=Melinda
lName=French
bYear=1964

p2':Person
fName=Bill

lName=Gates
bYear=1946

p3':Person
fName=Bill

lName=Gates
bYear=1955 A'1

p1':Person
fName=Melinda
lName=French
bYear=1964

p2':Person
fName=Bill

lName=Gates
bYear=Unknown

p3':Person
fName=Bill

lName=Gates
bYear=1955 A'2

e1':Employee
fName=Melinda
lName=French
Salary=5000

e2':Employee
fName=Bill

lName=Gates
Salary=4000

e3':Employee
fName=Bill

lName=Gates
Salary=6000

B'

e1=e1'
e2=e2'
e3=e3'

e1=e1'
e3=e3'b1 b2

Fig. 1: The need of vertical deltas (updates)

with their names and salaries. Two models are considered consistent if the cor-
respondence between Persons and Employees, inferred from the equality of their
full names, is bijective. Initially models A and B are consistent, but then B is
modified into B′ and we need to propagate the change to the A side.

A suitable state-based BX framework designed for this task is trigonal sys-
tems [6]. Changes between the two sides are propagated by two ternary opera-
tions: forward propagation fPpg and backward propagation bPpg. When model
B changes to B′, operation bPpg takes the updated model B′ and the original
models B,A, and produces an updated model A′ = bPpg(B′, B,A). Forward
propagation fPpg works similarly: B′ = fPpg(A′, A,B).

Figure 1 shows that two reasonable interpretations of the updated model B′

are possible. Object e2′ may be understood as either a renamed version of e2,
or a new object inserted into the model while e2 is deleted. The difference can
be formally captured by specifying sets of pairs (e, e′) ∈ B×B′ with e and e′

considered to represent the same object; we call this set 'v ⊂ B×B′ a (vertical)
sameness relation. A triple b = (B,'v, B

′) is called an update delta from B to
B′ and we write b : B → B′. From 'v we can infer which objects were deleted,
inserted, or modified. For example, e2 is deleted by delta b2 because it is not
included in b2, but it is modified by b1 because it is declared to be the same as
e2′ and the last names in e2 and e2′ are different.

Now we observe that two different deltas, b1 and b2, lead to two different
synchronization results. To see that, we first define a correspondence between
models A and B via full names of objects, i.e., we set a (horizontal) sameness
relation 'h⊂ A×B between models A and B; in our case, it consists of three
pairs (pi, ei), i = 1, 2, 3. Propagating delta b1 to the A side results in model A′1:
as objects p2 and e2, e2 and e2′ are the same, we merely apply modification
of e2 to p2. However, propagation of delta b2 leads to model A′2, which differs
from A′1 in the value of bYear: as object e2 is deleted and e2′ is inserted, object
p2 is deleted and A-counterpart of e2′ — a new object p2′ — is inserted, but
its birth date is unknown. Thus, propagation essentially depends on deltas, and

3

?

p1':Person
fName=Melinda
lName=French

bYear=1964

p2':Person
fName=Bill

lName=Gates
bYear=1946

p3':Person
fName=Bill

lName=Gates
bYear=1955 A'1

e1':Employee
fName=Melinda
lName=French
Salary=5000

e2':Employee
fName=Bill

lName=Gates
Salary=4000

e3':Employee
fName=Bill

lName=Gates
Salary=6000

B'

:fPpg
p1'':Person

fName=Melinda
lName=Gates
bYear=1964

p2'':Person
fName=Bill

lName=Clinton
bYear=1946

p3'':Person
fName=Bill

lName=Gates
bYear=1955 A''

:Employee

fName=Melinda
lName=Gates
Salary=5000

:Employee

fName=Bill
lName=Clinton
Salary=4000

:Employee

fName=Bill
lName=Gates
Salary=6000

B''1

:Employee
fName=Melinda
lName=Gates
Salary=5000

:Employee
fName=Bill

lName=Gates
Salary=4000

:Employee
fName=Bill

lName=Clinton
Salary=6000 B''2

?
p1'=e1'
p2'=e2'
p3'=e3'

p1'=e1'
p2'=e3'
p3'=e2'

r1

r2p1'=p1''
p2'=p2''
p3'=p3''a'

Fig. 2: The need of horizontal delta (correspondence)

propagation operation bPpg has to compute them using some heuristics, and
then propagate the change.

To unify terminology and notation, we call a triple r = (A,'h, B) a corre-
spondence or horizontal delta from A to B and write r : A↔ B; update deltas
are vertical. Importantly, the same models A and B may have different corre-
spondence deltas between them. For example, suppose that a user reviews the
updated model A1′ and discovers that the change is mistaken: it is Melinda
French who gets married and changes her last name, but not Bill Clinton. Then
the user changes names of objects p1 and p2 to, respectively, Melinda Gates and
Bill Clinton, as shown in Fig. 2 with update delta a′ : A′1 → A′′. To propagate
the update to the B-side, we need to relate models A1′ and B′ and rename the
corresponding Employees. However, because there are two “Bill Gates” in both
models, two cases of correspondences, r1 and r2 in Fig. 2, are possible, which
lead to two different results: B′′1 and B′′2 . Of course, from the previous propaga-
tion we know that the correct delta is r1, but since this delta does not explicitly
occur in the output of operation bPpg, forward propagation fPpg does not know
it and has to infer it from the current states of the models.

2.2 Unweaving delta discovery and propagation
A � r - B

:bPpg↙↙

A′1

a1
?
� r1- B′1

b1
?

:fPpg↘↘

A′′

a′
?
�r
′′
- B′′

b′

?

Problems of merging delta discovery into update
propagation. First, such a merge, as presented in state-
based frameworks, essentially complicates propagation op-
erations and their semantics. Delta discovery is an inde-
pendent operation with its own laws [1, 15], and is usually
far more complex than propagation as such. Weaving delta
discovery into update propagation complicates the laws of
the latter and makes its behavior less predictable.

Second, it unnecessarily complicates support of update sequences. Indeed,
our example can be specified as shown by the inset diagram above (input nodes

4

are framed and input arrows are solid; output elements are, respectively, non-
framed and dashed). It shows that the output horizontal delta r1 produced by
bPpg must be the input delta for fPpg. However, in a straightforward state-based
implementation, operation fPpg computes the delta afresh, which may result in
a different delta r′1 6= r1.

Third, our previous work [5] shows that similar problems appear in sequential
composition of BX (think of another BX from B- to C-models) if vertical deltas
are replaced by pairs of models, as is done in the state-based frameworks.

A solution to these three problems is to encapsulate delta propagation in
a special module, which takes the horizontal and vertical deltas as input, and
produces new vertical and horizontal deltas as shown in the inset diagram above;
we call such a module a delta-based BX. It has a simple algebraic semantics,
prevents erroneous composition of updates and BXs, and allows reusing deltas.

Implementation of deltas. Normally, only small parts of big models are
updated, and implementing vertical deltas as sameness relations is very non-
economic. A practical solution is to implement them operationally as edit se-
quences or as overriding deltas [17, 5]. Horizontal deltas can be seen as trace-
ability links, which are maintained by many transformation tools. For either
representation, deltas can be abstracted as arrows relating two models.

Managing deltas and tool architecture. Having a separate delta-propagating
module provides a flexible tool architecture. For example, the state-based frame-
work can be simulated if deltas are first discovered by a model differencing tool
and then passed to the propagation module. If the two models are related by
a transformation, horizontal deltas can be inferred from it — this architecture
is used in SyncATL [16]. Hybrid interfaces (state-based for one dimension and
delta-based for the other) are also possible, e.g., two incremental synchroniza-
tion tools, based on TGG [8] and QVT [13], take vertical deltas as input and
store horizontal deltas internally. An additional advantage of separating delta
discovery from propagation is that the user may control the result of differencing
and correct it if needed. Finally, if the synchronizer can be tightly coupled with
the application, deltas can be obtained by recording the user operations within
the applications; in this case, model differencing phase is not needed.

Although the tools mentioned above actually use a separated delta propa-
gation module, they lack a precise specification of both their architecture and
semantics of propagation procedures they guarantee. Filling the gap needs a
precise definition of delta-based symmetric BX and a formal algebraic theory of
delta propagation. Developing both of them is our goal for the rest of the paper.

3 Symmetric delta lenses

We first specify an algebraic structure modeling the very basic properties of up-
date propagation (Section 3.1). Then we enrich the structure with more advanced
laws of undoability and invertibility (Section 3.2).

5

3.1 The basic structure

We begin by defining the space of models and their vertical deltas as a graph with
an additional structure representing do-nothing updates and update inversion;
this structure makes the graph reflexive and involutive.

Definition 1 (Model space) A model space A is a graph (MA,∆A, $A),
whose nodes A ∈MA are called A-models, arrows a ∈∆A are A-model deltas,
and $A is a quadruple of total unary “bookkeeping” functions (2

A
, 2

A
, id

A
,

˘A) (with “ ” being the placeholder) providing A with the structure of reflexive
involutive graph explained below.

Functions 2
A
, 2

A
: ∆A →MA provide deltas with their source and target

models resp., and we write a : A→ A′ if 2
A
a = A and a2

A
= A′. Intuitively, we

understand a as a delta resulting from some update to model A, i.e., as a triple
(A,'v, A

′) like those considered in Section 2.1. By an abuse of terminology, we
will often call delta a an update from A to A′ (though different sequences of
update operations can result in the same delta).

Function id
A

: A→∆A assign to every model A a special identity delta
id

A
A : A→ A that identically relates A to itself. Such a delta may be thought

of as (the result of) an idle update to A, which does nothing. To capture this
intuition formally, we need to introduce sequential composition of deltas and
require id

A
to be its neutral unit (see [5] for details), but in this paper we do

not consider vertical delta composition. However, we will later capture idleness
of id

A
-arrows wrt. their composition with horizontal deltas.

Finally, ˘A is an unary operation of delta inversion: for a : A→ A′, arrow
ă A : A′ → A is the same delta traversed in the opposite direction. For exam-
ple, the inverse of delta a = (A,', A′) : A→ A′ in Fig. 2 with ' = {(p1, p1′),
(p2, p2′), (p3, p3′)} is delta ă = (A′,'−1, A) : A′ → A with '−1 = {(p1′, p1),
(p2′, p2), (p3′, p3)}. It can be understood as the delta resulting from undoing
update a: changing lNames of p1′ and p2′ to French and Gates resp.

The following evident laws are required (subscript A near ˘ is omitted):
(id

A
A)̆ = id

A
A for all A ∈MA and (ă)̆ = a for all a ∈∆A,

which make operation ˘ an involution and the graph involutive.
Thus, a model space is a reflexive involutive graph.

A model space is also know as a reflexive involutive graph, where reflexiveness
means that there are identity arrows between nodes, and involution means that
arrows have their inverses and the involutive laws hold.

Now we introduce horizontal deltas as arrows between models in two model
spaces, and come to the notion of triple spaces.

Definition 2 (Triple space) A triple space R : A↔ B or A
R←→ B consists

of a pair of models spaces (A,B), and a set R of arrows from A-nodes to B-nodes
called correspondence relations, or just corrs. Formally, R = (MA,MB,∆AB, $AB)
is a graph with MA∪MB being the set of nodes, ∆AB the set of arrows (corrs),
and $AB consists of two functions, 2

AB
: ∆AB →MA and 2

AB
: ∆AB →MB,

6

A � r - B

:fPpg↘↘

A′

a ?
� r′ - B′

b
?

A � r - B

:bPpg↙↙

A′

a
?
� r′ - B′

b?

A � r - B

:fPpg↘↘

A

idA
?
� r - B

idB
?

A � r - B

:bPpg↙↙

A

idA
?
� r - B

idB
?

(a) fPpg (b) bPpg (c) (IdPpg) law

Fig. 3: Stable sd-lens: operations (a,b) and the law (c)

providing corrs with their source and target models. For r ∈ ∆AB, we write
r : A↔ B if 2

AB
r = A and r2

AB
= B.

To ease terminology, we will use term ’delta’ generically for both updates
(vertical deltas) and correspondences (horizontal deltas). We will also write
bookkeeping functions, i.e., components of $A, $B, and $AB without subscripts.

Remark 1 (on bidirectional arrows). Use of bidirectional arrows does not mean
that spaces A and B play the same role: we still distinguish A as the left and B as
the right spaces of the triple space. Corrs can be thought of as bidirectional UML-
associations between models. In a more refined formal setting, we could introduce
corrs going from B- to A-models, and an involutive operation of inverting a corr.
Then a bidirectional corr can be understood as a pair of mutually inverse directed
corrs.

Now we define operations modeling update propagation.

Definition 3 (sd-lenses) A symmetric delta lens (sd-lens) over a triple space

A
R←→ B is a pair of forward and backward propagation operations (note that

backward propagation arrow goes from right to left)
fPpg : ∆A

2×∆AB →∆B ×2∆AB and bPpg : ∆A 2×∆AB ←∆B×2 ∆AB

of arities shown in Fig. 3(a,b): input nodes are framed, input arrows are solid,
and the output elements are non-framed and dashed. Figure 4 shows an example:
operation fPpg takes deltas a and r and produces deltas b and r′.

Symbol 2× in the formulas above denotes the subset of the respective Carte-
sian product consisting of all pairs of arrows with the same source: ∆A

2×
∆AB = {(a, r) ∈∆A×∆AB : 2

A
a = 2

AB
r}, and respectively ∆B ×2 ∆AB =

{(b, r) ∈∆B×∆AB : b2
B

= r2
AB
} is the subset of pairs with the same target.

Similarly, the meaning of symbols ×2 and 2× is defined by diagram Fig. 3(b).
We must also require right correspondence of the input and output pairs: for
fPpg, if (b, r′) = fPpg(a, r), then 2b = r2 and 2r′ = a2 , and for bPpg, if
(a, r′) = bPpg(b, r), then 2a = 2r and r′2 = b2 . We call these and similar
equations specifying relationships between arrows incidence conditions.

Note that the arity diagrams unambiguously specify all required incidence
conditions, and their explicit string-based formulation as above can be omit-
ted. In fact, operations like fPpg and bPpg act upon arrow diagrams, and can

7

e1:Employee
fName=Melinda
lName=French
Salary=5000

e2:Employee
fName=Bill

lName=Gates
Salary=6000

B

e1':Employee
fName=Melinda
lName=Gates
Salary=5000

B'

e1=e1'

p1:Person
fName=Melinda
lName=French

bYear=1964

p2:Person
fName=Bill

lName=Gates
bYear=1955

A

p1':Person
fName=Melinda
lName=Gates
bYear=1965

A'

p1=p1'a

p1=e1
p2=e2

p1'=e1'

:fPpg

 r

 r'

b

Fig. 4: Example of update propagation

be accurately formalized in terms of diagram algebra [4], which allows one to
avoid bulky formulation of incidence conditions. Below we will use the arity
diagram of an operation as a part of the definition rather than an auxiliary
illustration. The reader wishing to translate such definitions into more habit-
ual formulas, can easily do it as explained above. To guide this translation,
we will also provide formula-based definitions using polymorphic symbol � de-
noting the subset of the respective Cartesian product defined by the arity dia-
gram; the meaning of this symbol thus depends on the arity diagram. For ex-
ample, arities above are described as follows: fPpg : ∆A �∆AB →∆B �∆AB,
bPpg : ∆A �∆AB ←∆B �∆AB, plus equations specifying incidence of the
output and input arrows. Below we will omit incidence conditions of the lat-
ter type: they will be evident from the arity diagrams.

The small double arrows in the middle labeled by :fPpg, :bPpg indicate that
the squares are application instances of the operations (other instances are are
formed by other arguments). In the same manner we could write also a:∆A,
r:∆AB etc, but we omit these to avoid too heavy notation.

It is convenient to use also the following notation: for the situation in Fig. 3(a),
we write a.fPpg(r) for b and r.fPpg(a) for r′, and similarly for bPpg. To resolve
ambiguity, we always use a, b to denote deltas in A,B, and r to denote corre-
spondences.

A natural requirement for sd-lenses is that if the input delta changes nothing,
the output delta should also change nothing. Formally, we call an sd-lens stable
if the following law holds for any corr r : A→ B (see Fig. 3c):
(IdPpg) fPpg(idA,r)=(idB,r) and bPpg(idB,r)=(idA,r).

The rest of the paper assumes this law holds by default unless the otherwise
is explicitly specified.

We write an sd-lens over a triple space A
R←→ B as a double bidirectional

arrow λλλ : A
R⇐⇒ B meaning that the second arrow refers to a pair of operations

(fPpg, bPpg) constituting the lens.

8

3.2 Invertibility and undoability

A basic requirement for bidirectional model synchronization is compatibility of
propagation operations between themselves. Given a corr r : A↔ B, an update
a : A→ A′ is propagated into update b = a.fPpg(r), which can be propagated
back to update a′ = b.bPpg(r). For an ideal situation of strong invertibility, we
should require a′ = a. Unfortunately, it does not hold in general because A-
specific part of the information is lost in passing from a to b, and cannot be
restored. For example, in Fig. 4 A-objects have birth years, which are absent on
the B-side and hence are lost in a′. However, we could still require invertibility
for data shared between A and B. In our example, name changes are shared and
will be restored in a′; hence, a 6= a′ but a′.fPpg = a.fPpg. We thus come to the
notion of weak invertibility of update propagation; it is formalized as follows.

Definition 4 (update equivalence) Given an sd-lens λλλ : A
R⇐⇒ B and a corr

r : A↔ B, two updates of model A, a1 : A→ A′1 and a2 : A→ A′2, are called r-
equivalent if a1.fPpg(r) = a2.fPpg(r); we then write a1 ∼r a2. Similarly, we
introduce r-equivalence b1 ∼r b2 on B-side. (It is easy to see that both relations
are indeed equivalence relations.)

Definition 5 (invertible lenses) Operations fPpg and bPpg are (weakly) in-
vertible if equations below hold for any r : A↔ B and all a : A→ A′, b : B → B′:
(fbInv) a.fPpg(r).bPpg(r) ∼r a.
(bfInv) b.bPpg(r).fPpg(r) ∼r b.

We will call an sd-lens satisfying the laws invertible. We show in [9] that
invertible sd-lenses can be implemented with triple-graph grammars.

Another important requirement for a reasonable BX is undoability discussed
by Stevens [14] in the state-based setting. In an ideal situation of strong undoabil-
ity, if update a is first propagated as b and then is cancelled by delta ă : A′ → A,
we require a reasonable BX to produce delta b̆ : B′ → B to cancel the change
on the other side. Unfortunately, it does not hold in general because some infor-
mation about B may be lost in B′ and cannot be restored. For example, Fig. 5
continues the story of Fig. 4 and shows an update ă canceling a. According to
corr r′, a corresponding new object e2 (Bill Gates in B) should be inserted into
model B′ and return it back to B. However, since Bill’s Salary was lost in B′,
the propagation of ă along r′ can only set his Salary to Unknown thus resulting
in a new object e2′′ and a new model B′′. It is a vertical-delta analog of the phe-
nomenon we have just discussed for horizontal deltas, and the strong condition
should be again relaxed by considering updates up to their equivalence.

Definition 6 (undoable lenses) An sd-lens is called (weakly) undoable if the
following forward-undo and backward-undo laws hold:
(fUndo) Let (b, r′) = fPpg(a, r). Then ă .fPpg(r′) ∼r′ b̆ .
(bUndo) Let (a, r′) = bPpg(b, r). Then b̆ .bPpg(r′) ∼r′ ă .

9

p1':Person
Name=Melinda
lName=Gates
bYear=1965

A'

p1:Person
fName=Melinda
lName=French
bYear=1964

p2:Person
fName=Bill
lName=Gates
bYear=1955

A

e1':Employee
fName=Melinda
lName=Gates
Salary=5000

B'

p1'=e1'

e1:Employee
fName=Melinda
lName=French
Salary=5000

e2'':Employee
fName=Bill
lName=Gates

Salary=Unknown
B''

p1=e1
p2=e2''

:fPpgaᵕ p1'=p1 b'

r''

r'

e1'=e1

Fig. 5: Undoing update a from Fig. 4

In Appendix, we show that an sd-lens may be (i) invertible but not undoable,
(ii) undoable but not invertible, or (iii) invertible and undoable. It means that
the two notions are independent and consistent.

To unify terminology, we will call an invertible/undoable lens horizontally/ resp.
vertically well-behaved (Wb). A lens is well-behaved if it is both horizontally and
vertically Wb. We will also refer to the laws as horizontal/vertical round-tripping.

4 Consistency maintenance and alignment

We have seen that a well-behaved sd-lens exhibits a truly BX-behavior. An ad-
vantage of the framework is its simplicity yet applicability to practical scenarios.
However, simplicity of the sd-lens framework comes for a price.

First, an update propagation in sd-lenses actually consists of two steps, and
their coupling prevents the reuse of operations in the implementation. Consider
Fig. 6 that shows the case of propagation in Fig. 4 in more details. The first step
is to align models A′ and B and compute a new (diagonal) correspondence delta
d : A′ ↔ B based on the original delta r and update a : A→ A′. We call this
operation forward (re-)alignment and denote it as fAln. Note that re-alignment
is nothing but composition of two deltas (a simple computation), and should not
be confused with delta discovery (requiring heuristics). With this reservation, we
will call re-alignment just alignment.

The new correspondence d reveals an inconsistency: objects p1′ and e1 are
declared to be the same yet their lName attributes are different. Hence, in the
second step consistency must be restored by updating object e1 to e1′, and
thus we produce an update delta b : B → B′ and consistent correspondence delta
r′ : A′ ↔ B′ from delta d. We call this operation forward (consistency) restora-
tion, fRst. Since different restoration operations can be built on top of the same
alignment framework, we could reuse alignment operations. However, their reuse
cannot be realized within the sd-lens interface, since (re-)alignment operations
are woven into update propagation in sd-lenses.

The second problem of the sd-lens interface is related to an important BX
requirement — Hippocraticness law of Meertens/Stevens [12, 14]. When model A
is updated to A′, it may happen that the new diagonal delta d is still consistent

10

e1:Employee
fName=Melinda
lName=French
Salary=5000

e2:Employee
fName=Bill
lName=Gates
Salary=6000

B

e1':Employee
fName=Melinda
lName=Gates
Salary=5000

B'

e1=e1'

p1:Person
fName=Melinda
lName=French
bYear=1964

p2:Person
fName=Bill
lName=Gates
bYear=1955

A

p1':Person
fName=Melinda
lName=Gates
bYear=1965

A'

p1=p1'a

p1=e1
p2=e2

p1'=e1'

:fRst

 r

 r'

b
p1'
=e1

:fAln

d

Fig. 6: Two steps in update propagation

and then nothing should be done on the B-side. However, since in sd-lenses we
have no access to diagonal deltas, we cannot formulate the requirement above.

We call a pair of forward and backward alignment operations an alignment
framework to stress its basic supporting role for restoration operations built
on top of it. We call a pair of forward and backward restoration operations a
maintainer. Below in this section we formalize the two notions and show that
well-behaved maintainers correctly implement well-behaved sd-lenses.

4.1 Alignment taken seriously

We define the notion of alignment framework as a triple space enriched with
re-alignment operations.

Definition 7 (Alignment framework) An alignment framework over a triple
space R : A↔ B is a couple of operations

fAln : ∆A �∆AB →∆AB and bAln : ∆AB ←∆B �∆AB

called forward and backward alignment resp., where symbols � denote subsets of
the respective Cartesian products consisting of all incident arrows as specified by
Fig. 7(a,b) (see p.8). We will also write a∗ r for fAln(a, r) and r ∗ b for bAln(b, r).

Note that computation of the initial corr r : A↔ B is beyond the framework: the
initial alignment (model matching) may need complex heuristic and other con-
text dependent information. Hence, operations above are actually re-alignment
operations, but we will often call them alignments to ease terminology.

There are two laws. Identity updates do not actually need re-alignment:
(IdAln) idA ∗ r = r = r ∗ idB
for any corr r : A→ B.

The result of applying a sequence of interleaving forward and backward align-
ments does not depend on the order of application as shown in Fig. 7(c):
(AlnAln) (a ∗ r) ∗ b = a ∗ (r ∗ b)
for any a ∈∆A, r ∈∆AB, b ∈∆B.5

5 We could also directly define alignment as arrow composition (with pre-involution
if necessary); then AlnAln law is nothing but associativity.

11

• �
r - •

:fAln↘↘

•

a

?�

a∗r

-
• �

r - •
:bAln↙↙

•

b

?

�

r∗b
-

• �
r - •

•

a

?
� r′ -�

a∗
r

-

•

b

?

�

r∗b
-

(a) fAln (b) bAln (c) fAln;bAln = bAln;fAln

Fig. 7: Alignment operations and their laws

We will call diagrams like shown in Fig. 7(a,b,c) commutative if the arrow at
the respective operation’s output is indeed equal to that one computed by the
operation. For example, diagram (c) is commutative if r′ = a ∗ r ∗ b.

Note that in general r 6= ă ∗(a∗r) and r 6= (r∗b)∗b̆ because some information
can be lost in delta composition.6

We will write an alignment framework as an arrow ααα: A �===
R- B meaning

that ααα comprises a triple space R (one bidirectional arrow) and two operations
fAln, bAln over it (the other one).

4.2 Consistency maintainers: Hippocratic update propagation

Definition 8 (maintainers) A (consistency) maintainer over an alignment

framework ααα: A �==
R- B comprises (i) a subclass K ⊂ ∆AB of consistent corrs

and (ii) a couple of consistency restoration operations
fRst : ∆AB →∆B�∆AB and bRst : ∆A�∆AB ←∆AB

of arities shown in Fig. 8 (a,b): output nodes and arrows are shown blank and
dashed resp.

If (b, r′) = fRst(r), we will also write r| for b and r for r′; similarly, if
(a, r′) = bRst(b), we write |r and r for a and r′. In composed formulas, bars
and underscores always have the highest priority.

A maintainer is called correct if its output corrs are always consistent, and
are compositions of the original corr with output updates:
(Corr) r ∗ r| = r ∈ K and |r ∗ r = r ∈ K
A maintainer is called Hippocratic (we borrow Stevens’ term [14]) if it does
nothing for an originally consistent corr as shown in Fig. 8(c):
(Hipp) If r : A→ B ∈ K, then |r = idA, r| = idB and r = r = r .

We write a maintainer as an arrow µµµ : A
K⊂R
W≡V B comprising pairs of opera-

tions (fAln,bAln) and (fRst,bRst) over the triple space A
R←→ B.

6 In a more refined setting with composition of vertical deltas, neither a; ă nor ă ; a
are identities.

12

•

:fRst↘↘
• �

r -�

r

-

◦

r|

?

•

:bRst↙↙
◦

|r

?
� r - •

�

r

-

• �
r:K - •

◦

idA

?�

r

-

◦

idB

?

�

r

-

(a) fRst (b) bRst (c) Hippocraticness

Fig. 8: Consistency restoration operations (a,b) and their laws

• �
r - •

:fAln↘↘

:fRst↘↘
•

a

?
� r′ -�

a∗r

-

◦

b

?

(a) Definition of fPpg

• �
r - •

:bAln↙↙

:bRst↙↙
◦

a

?
� r′ - •

b

?

�

r∗b

-

(b) Definition of bPpg

bᵕ
d1

r'

|e1

_e1

e2|

e2_

e1

r: K
A

A'

B

B'

B"

A"

a

|e1 * r

b

r'*e2|

d2e2

d1 = a * r
 b = d1|
 r' = d1_

a

~

~

(c) Invertibility and
undoability conditions

Definitions of derived (dashed)
arrows

d2 = r' * b
e1 = r * b
e2=a * r'ᵕ

ᵕ

ᵕ

Fig. 9: From maintainers to lenses

4.3 From maintainers to lenses: invertibility and undoability

Maintainers are designed to implement lenses: update propagation operations
can be defined via alignment and restoration operations as shown in Fig. 9(a,b).

Definition 9 (from maintainers to lenses) Given a correct maintainer

µµµ : A
K⊂R
W≡V B, we define a lens pµµµq : A

K⇐⇒ B by setting

fPpg(a, r)
def
= (d|, d) with d = a ∗ r, and bPpg(b, r)

def
= (|e, e) with e = r ∗ b.

It is easy to see that lens pµµµq is stable as soon as µµµ is Hippocratic. That is, a
correct and Hippocratic maintainer implements a stable lens.

Now we want to state conditions for µµµ ensuring that the lens pµµµq is well-
behaved. Since the notion of update equivalence is crucial here, we first refor-
mulate it as corr equivalence in terms of restoration operations.

Definition 10 (corr equivalence) Two corrs with the same target, ri : Ai ↔ B,
i = 1, 2 are called forward equivalent if r1| = r2|; we write r1 ∼• r2. Dually,
two corrs with the same source ri : A↔ Bi are backward equivalent, r1 •∼ r2, if
|r1 = |r2.

13

Lemma 1. Given corr r : A↔ B and updates ai : A→ A′i,bi : B → B′i, i = 1, 2,

a1∗r ∼• a2∗r (in µµµ) iff a1 ∼r a2 (in pµµµq)(1)

r∗b1 •∼ r∗b2 (in µµµ) iff b1 ∼r b2 (in pµµµq)(2)

Proof. Immediate from Definition 9 2.

The next step is to substitute operations defined in Definition 9 into Defini-
tions 5 and 6 of invertibility and undoability. The result is the following definition
and accompanying diagram Fig. 9(c).

Definition 11 (well-behaved maintainer) (a) A correct maintainer is called
invertible or horizontally well-behaved (hWb) if the following two dual conditions
hold for any r : A↔ B ∈ K (see diagram Fig. 9(c) for the first of them):
(fbInvm) For any a : A→ A′, let d1 = a∗r, e1 = r ∗ d1|. Then |e1 ∗ r ∼• d1
(bfInvm) For any b : B → B′, let d1 = r∗b, e1 = |d1 ∗ r. Then r ∗ e1| •∼ d1

(b) A correct maintainer is called undoable or vertically well-behaved (vWb)
if the following two dual conditions hold for any r : A↔ B ∈ K:
(fUndom) For any a : A→ A′, let d1 = a∗r, b = d1|, r′ = d1 , d2 = r′ ∗ b̆ ,

and e2 = ă ∗ r′. Then d2 •∼ r′ ∗ e2|
(bUndom) For any b : B → B′, let d1 = r∗b, a = |d1, r′ = d1, d2 = ă ∗ r′,

and e2 = r′ ∗ b̆ . Then d2 ∼• |e2 ∗ r′
(again

see diagram Fig. 9(c) for the first of the conditions).

Details clarifying the meaning of formulas can be found in the long ver-
sion. The notion of invertible maintainer is implicit in [9], where alignment and
restoration operations are realized by TGG-means.

(c) A correct maintainer is called well-behaved (Wb) if it is well-behaved both
horizontally and vertically.

Lemma 1 and Fig. 9 make proof of the following theorem straightforward.

Theorem 1. Let µµµ : A
K⊂R
W≡V B be a correct maintainer and pµµµq : A

K⇐⇒ B is
the sd-lens derived from it. Then the following holds

(i) pµµµq is stable iff µµµ is Hippocratic.

(ii) pµµµq is invertible iff µµµ is invertible.

(iii) pµµµq is undoable iff µµµ is undoable.

Proof. (i) is evident. For proving (ii), we first note that equation fbInvm im-
plies a.fPpg(r).bPpg(r) ∼r a as is easily seen from triangle AB′A′′ (updates
are equivalent because of lemma 1), that is, fbInvm provides lens’ fbInv. The bf-
part is proved in the same way. For (iii), we note that fUndom provides equality
ă .fPpg(r′) ∼r′ b̆ : consider triangle AB′B′′ and apply the lemma again, that
is, fUndom implies lens’ undoability fUndo. The b-part is proved symmetrically.
2.

Corollary 1. A correct maintainer µµµ implements a well-behaved sd-lens pµµµq iff
µµµ is itself well-behaved.

14

The theorem shows that heavy definitions of maintainers’ laws can be hidden
under the hood of the sd-lens framework. The latter thus demonstrates a rea-
sonable trade-off between concreteness and abstraction: it is abstract enough to
free the user from the (re-)alignment concerns, yet provides enough flexibility
by explicitly including deltas.

5 From delta- to state-based model sync

We will show that state-based frameworks appear as special simple cases of delta-
based ones, if model deltas are degenerated into pairs of models. The following
notion is central.

Definition 12 (Simple spaces) A graph A = (MA,∆A, $A) is called simple
if for any pair of nodes (A,A′) there is exactly one arrow a : A→ A′. Hence,
we can identify arrows with pairs of nodes and define ∆A = MA×MA with

2(A,A′)
def
= A, and (A,A′)2

def
= A′.

Any simple graph is automatically reflexive, idA
def
= (A,A), and involutive,

(A,A′)̆
def
= (A′, A)

Similarly, a correspondence graph R = (MA,MB,∆AB, $AB) is called sim-
ple if there is exactly one arrow r : A↔ B for any pairs of nodes A ∈MA and
B ∈MB.

A triple space is simple if all three graphs are simple; we then write A
R←•→ B.

Lemma 2. A binary relation R ⊂ A ×B over sets A,B, determines a unique
simple triple space with MA = A, MB = B, ∆A = A×A, ∆B = B×B,
∆AB = R, and evident bookkeeping functions.

Now we consecutively consider three classes of state-based symmetric Bx:
state-based symmetric lenses (a new construct defined here), state-based main-
tainers (Meertens and Stevens), and state-based complement-based symmetric
lenses (Hofmann et al), define their well-behavedness, and specify relations with
respective delta-constructs over triple spaces.

5.1 From delta- to state-based symmetric lenses

Definition 13 (ss-lenses) A state-based symmetric lens (ss-lens) λ : A
R⇐•⇒ B

consists of two non-empty sets A,B, a consistency relation R ⊂ A×B, and two
binary operations: [, 〉 : A×R→ B and 〈 ,] : A← B×R.

To ease notation, we will write AB for a pair (A,B) ∈ R, B′ = A′.[AB〉 if
B′ = [A′, AB〉, and A′ = B′.〈AB] if A′ = 〈B′, AB].

An ss-lens is called stable if for any AB ∈ R, the following state-based
counterpart of IdPpg holds:

(IdPpg•) A.[AB〉 = B and B.〈AB] = A.

An ss-lens is called correct if it provides consistency of its output, that is, for
all AB ∈ R, A′ ∈ A, B′ ∈ B, (A′, A′.[AB〉) ∈ R and (B′.〈AB], B′) ∈ R.

15

Definition 14 ((Propagation) equivalence) Given an ss-lens λ : A
R⇐•⇒ B

and pairAB ∈ R, modelsA1, A2 are called AB-equivalent ifA1.[AB〉 = A2.[AB〉;
we write A1 ∼AB A2. We define B1 ∼AB B2 in the same (symmetric) way.

Definition 15 (well-behaved ss-lenses) A stable correct ss-lens is called
(weakly) invertible/(weakly) undoable if it satisfies the following state-based
counterparts of (weak) invertibility/undoability laws:
(Inv•) A.[AB〉.〈AB] ∼AB A and B.〈AB].[AB〉 ∼AB B.
(fUndo•) Let B′ = A′.[AB〉. Then B ∼A′B′ A.[A′B′〉
(bUndo•) Let A′ = B′.〈AB]. Then A ∼A′B′ B.〈A′B′]

An ss-lens is called well-behaved (wb) if it correct, stable, undoable and in-
vertible.

Remark 2. Ss-lenses are close to trigonal systems [6] with totally defined oper-
ations. However, invertibility and undoability formulated in [6] are strong.

Theorem 2. Well-behaved sd-lenses over simple triple spaces and well-behaved
ss-lenses are equivalent constructs.

Proof. The passage from simple well-behaved sd- to well-behaved ss-lenses is

straightforward. The converse passage is also easy: given an ss-lens λ : A
R⇐•⇒ B,

we build a triple space by lemma 2, and define fPpg(AA′, AB)
def
= (BB′, A′B′)

where B′ = A′.[AB〉; operation bPpg is defined symmetrically. Checking the laws
is straightforward. Finally, the two passages are evidently mutually inverse.

Thus, the state-based lens models of BX are nothing but state-based reducts
of sd-lens models.

5.2 From delta- to state-based maintainers

In a nutshell, the notion of well-behaved state-based maintainers can be derived
from delta-based maintainers in the same way as well-behaved ss-lenses were
derived from sd-lenses (Lemma 3 shows how to manage alignment). Then a
maintainer-counterpart of theorem 2 can be proved. Here is the details.

Lemma 3. A simple triple space with R = A×B becomes an alignment frame-
work if we define AA′ ∗AB = A′B and AB ∗BB′ = AB′.

Proof. The laws of alignment frameworks, IdAln and AlnAln, are evident. ut

Definition 16 (Stevens [14]) A state-based maintainer (s-maintainer)

µ : A
K⇐•⇒ B consists of two sets (model spaces) A,B, a binary consistency re-

lation K ⊂ A×B and two binary restoration operations [, 〉 : A×B→ B and
〈 ,] : A← A×B.

S-maintainer is called
– correct if for any pair (A,B) ∈ A×B, (A, [AB〉) ∈ K and (〈AB], B) ∈ K;
– Hippocratic, if [AB〉 = B and A = 〈AB] as soon as (A,B) ∈ K.
– undoable, if for any consistent pair (A,B) ∈ K and all A′ ∈ A, B′ ∈ B,

[A, [A′B〉〉 = B and A = 〈〈AB′], B]

16

As discussed in [14], undoability rarely holds in practice because of the loss of
information during updates. To weaken the condition, we need the corresponding
notion of model equivalence.

Definition 17 ((Restoration) equivalence) Given an s-maintainer, models
A1, A2 ∈ A are called equivalent wrt. model B ∈ B, if [A1B〉 = [A2B〉; we write
A1 ∼B A2. Similarly, models B1, B2 are equivalent wrt. model A ∈ A, B1 ∼A B2,
if 〈AB1] = 〈AB2].

Definition 18 (undoability and invertibility) A correct s-maintainer is called
(i) (weakly) undoable or vertically Wb if for any consistent pair (A,B) ∈ K

and all A′ ∈ A, B′ ∈ B, the following holds:

(Undom
•) [A[A′B〉〉 ∼A′ B and A ∼B′ 〈〈AB′]B]

(ii) (weakly) invertible or horizontally Wb if for any consistent pair (A,B) ∈ K
and all A′ ∈ A, B′ ∈ B, the following holds:

(Inv•m) 〈A[A′B〉] ∼B A′ and B′ ∼A [〈AB′]B〉

(iii) A correct s-maintainer is well-behaved if it is Wb both vertically and
horizontally.

The following result is analogous to Theorem 2

Theorem 3. Well-behaved maintainers over simple triple spaces and well-behaved
s-maintainers are equivalent constructs.

Now Theorem 1 together with Theorems 2, 3 provides the following new state-
based result.

Corollary 4 Let µ : A
K⇐•⇒ B be a correct s-maintainer and pµq : A

K⇐•⇒ B is the
correct ss-lens derived from it. Then the following holds

(i) µ is Hippocratic iff pµq is stable.
(ii) µ is invertible iff pµq is invertible.
(iii) µ is undoable iff pµq is undoable.

5.3 Relation to symmetric lenses by Hofmann et al [10].

We first reformulate the notion of symmetric lens in our terms and notation.

Definition 19 (state-based symmetric lenses with complement) A state-
based symmetric lens with complement or ssc-lens in short, consists of three sets
A,B,C and two operations putr : A×C→ B×C and putl : A×C← B×C.

We denote an ssc-lens by an arrow λ : A
C⇐•⇒ B.

An ssc-lens is called stable if the following laws hold:
(PutRL) putl(B,C ′) = (A,C ′) if putr(A,C) = (B,C ′)
(PutLR) putr(A,C ′) = (B,C ′) if putl(B,C) = (A,C ′)

17

It is straightforward to check that a stable ssc-lens is a well-behaved symmet-
ric lens defined in [10] with the only difference: the latter have an element
missing ∈ C, which is omitted in ssc-lenses. Thus, what is called round-tripping
laws PutRL, PutLR in [10] are ours IdPpg laws, while our round-tripping laws
(invertibility and undoability) are not considered in [10].

To set relationships between sd-lenses and ssc-lenses, we need the following
notion.

Definition 20 (semi-simple triple spaces) A triple space (A,R,B) is called
semi-simple if graphs A,B are simple (but nothing special is assumed about R).

Theorem 5. An sd-lens λλλ : A
R⇐⇒ B over a semi-simple triple space gives rise

to an ssc-lens λλλ• : A
R⇐•⇒ B. The latter is stable as soon as lens λλλ is such.

Proof. First of all we define complement C = R. Then, given r ∈ C = R
and A ∈ A, B ∈ B, we define putr(A, r) = fPpg(a, r) with a = (2r,A), and
putl(B, r) = bPpg(b, r) with b = (r2 , B). Then sd-lens stability (i.e., IdPpg law)
becomes stability in the sense of ssc-lenses (well-behavedness in terms of [10]).

Remark 3. To introduce the notion of missing element into the sd-lens frame-
work, we need to add so called initial objects to our model spaces (this constructs
is well-known in category theory), we leave it for future work.

6 Related Work

In the previous section we have already seen the relation between our framework
and state-based frameworks. In this section we discuss other two classes of related
work.

Mathematical foundations for building delta-based frameworks (called tile
algebra) are described in [4]. Diagonal synchronizers specified there are basically
sd-lenses that distinguish between consistent and inconsistent corrs at the in-
put of propagation operations; in addition, they are equipped with alignment
operations called rematching. However, neither update inversion, nor the round-
tripping laws are considered in [4].

7 Conclusion

A delta-based symmetric BX is a synchronization module that does nothing
but propagating vertical deltas over horizontal ones; how these deltas are com-
puted and passed to the module is a separate concern. This design provides a
flexible architecture and fixes compositional problems of the state-based frame-
works. In the paper we built two algebraic frameworks for symmetric delta-based
BXs: more abstract sd-lenses that screen simple but tedious re-alignment com-
putations from the user, and closer to implementation maintainers. We found
new— weaker—versions of important invertibility and undoability laws, which

18

do constrain synchronization behavior, and yet do not exclude many practically
interesting BXs incompatible with the strong laws considered previously. Our
main result shows that an sd-lens can be implemented by a suitable maintainer,
and the former is weakly invertible and undoable iff the latter is such.

The framework still lacks lens and maintainer combinators for specifying
complex BX in a compositional way. A well-designed set of combinators would
make our frameworks practically applicable to the design of BX languages. We
leave it for future work.

Acknowledgment. We are grateful to Micha l Antkiewicz, Leo Passos and
Arif Wider for discussion and fruitful comments. Financial support was provided
by the Ontario Research Fund and NSERC.

References

1. Alanen, M., Porres, I.: Difference and union of models. In: UML. pp. 2–17 (2003)

2. Barbosa, D.M.J., Cretin, J., Foster, N., Greenberg, M., Pierce, B.C.: Matching
lenses: alignment and view update. In: ICFP. pp. 193–204 (2010)

3. Czarnecki, K., Foster, J.N., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.F.: Bidi-
rectional transformations: A cross-discipline perspective. In: ICMT (2009)

4. Diskin, Z.: Model synchronization: mappings, tile algebra, and categories. In: Post-
proc. GTTSE 2009. pp. 92–165 (2011)

5. Diskin, Z., Xiong, Y., Czarnecki, K.: From State- to Delta-Based Bidirectional
Model Transformations: the Asymmetric Case. Journal of Object technology 10,
6:1–25 (2011)

6. Diskin, Z.: Algebraic models for bidirectional model synchronization. In: MoDELS.
pp. 21–36 (2008)

7. Foster, J.N., Greenwald, M., Moore, J., Pierce, B., Schmitt, A.: Combinators for
bidirectional tree transformations: A linguistic approach to the view-update prob-
lem. ACM Trans. Program. Lang. Syst. 29(3) (2007)

8. Giese, H., Wagner, R.: From model transformation to incremental bidirectional
model synchronization. Software and System Modeling 8(1), 21–43 (2009)

9. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y.: Correct-
ness of Model Synchronization Based on TGG. In: MODELS (2011)

10. Hofmann, M., Pierce, B.C., Wagner, D.: Symmetric lenses. In: POPL (2011)

11. Hu, Z., Mu, S.C., Takeichi, M.: A programmable editor for developing structured
documents based on bidirectional transformations. Higher-Order and Symbolic
Computation 21(1-2), 89–118 (2008)

12. Meertens, L.: Designing constraint maintainers for user interaction (1998), Avail-
able from http://www.kestrel.edu/home/people/meertens/

13. Song, H., Huang, G., Chauvel, F., Zhang, W., Sun, Y., Mei, H.: Instant and incre-
mental QVT transformation for runtime models. In: MODELS (2011)

14. Stevens, P.: Bidirectional model transformations in QVT: semantic issues and open
questions. Software and System Modeling 9(1), 7–20 (2010)

15. Xing, Z., Stroulia, E.: UMLDiff: an algorithm for object-oriented design differenc-
ing. In: ASE. pp. 54–65 (2005)

16. Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M., Mei, H.: Towards automatic
model synchronization from model transformations. In: ASE. pp. 164–173 (2007)

19

17. Xiong, Y., Hu, Z., Zhao, H., Song, H., Takeichi, M., Mei, H.: Supporting automatic
model inconsistency fixing. In: ESEC/SIGSOFT FSE. pp. 315–324 (2009)

18. Xiong, Y., Song, H., Hu, Z., Takeichi, M.: Synchronizing concurrent model updates
based on bidirectional transformation. Software and Systems Modeling. To appear

Appendix

Since weak invertibility and weak undoability both enforce some forms of sym-
metry, we may have a concern: are they indeed two different laws? Does one law
imply the other? If they are indeed different, do we have lenses satisfying both
laws? Specifically, we need to answer the following three questions: (1) whether
there exits an undoable sd-lens that is not invertible, (2) whether there exists an
invertible sd-lens that is not undoable, and (3) whether there exists a undoable
and invertible sd-lens. In this section we show that the answers to the three
questions are all “yes” and show three examples that fit into the three cases,
respectively.

The three examples are built on the same triple space A
R←→ B, which is

defined as follows.

MA = {A}
∆A = {a : A→ A, ă : A→ A, idA : A→ A}
MB = {B}
∆B = {b : B → B, b̆ : B → B, idB : B → B}
∆AB = {r : A→ B}

In the domain of each side, there is only one model and three arrows: the identify
arrow and two mutually inverse arrows. Between MA and MB there is only one
arrow r.

The first sd-lens (fPpg1, bPpg1) is undoable but not invertible. Its two oper-
ations are defined below.

fPpg1(idA, r) = (idB, r) bPpg1(idB, r) = (idA, r)
fPpg1(a, r) = (b̆ , r) bPpg1(b, r) = (a, r)
fPpg1(ă , r) = (b, r) bPpg1(b̆ , r) = (ă , r)

It is easy to check (fPpg1, bPpg1) is stable and undoable. However, it is not
invertible because a.fPpg1(r).bPpg1(r) = ă but a and ă are not r-equivalent as
a.fPpg1(r) = b̆ and ă .fPpg1(r) = b.

The second sd-lens (fPpg2, bPpg2) is invertible but not undoable. Its two
operations are defined below.

fPpg2(idA, r) = (idB, r) bPpg2(idB, r) = (idA, r)
fPpg2(a, r) = (b, r) bPpg2(b, r) = (a, r)
fPpg2(ă , r) = (idB, r) bPpg2(b̆ , r) = (a, r)

It is easy to check this lens is stable. By examining the definition of weak invert-
ibility on each vertical arrow, we can see that this lens is invertible. However, it

20

is not undoable because a.fPpg2(r) = b and ă .fPpg2(r) = idB but b and idB are
not r-equivalent as b.bPpg2(r) = a and idB.bPpg2(r) = idA.

The third sd-lens (fPpg3, bPpg3) is both undoable and invertible. Its two
operations are defined below.

fPpg3(idA, r) = (idB, r) bPpg3(idB, r) = (idA, r)
fPpg3(a, r) = (b, r) bPpg3(b, r) = (a, r)
fPpg3(ă , r) = (b̆ , r) bPpg3(b̆ , r) = (ă , r)

By examining the two operations on every vertical arrow, we can see that the
lens is stable, undoable and invertible.

21

